

The potential for improved cookstoves to reduce carbon dioxide emissions

Adrian Whiteman, International Renewable Energy Agency (IRENA) International Energy Workshop, Abu Dhabi, 3-5 June 2015

International Renewable Energy Agency

Deforestation:

1980s fuelwood crisis

Health effects:

Indoor air pollution

Climate change:

Greenhouse gas emissions

Carbon dioxide emissions in 2010 (in MtCO₂)

Region	Type of			Emissions from			Woodfuel
	emission			woodfuel use			share of
	F. Fuel	LUC	Total	FW	СН	Total	total
Africa	1,171	1,256	2,427	590	226	817	34%
Asia and Oceania	16,529	630	17,159	952	66	1,018	8%
Europe	6,009	-720	5,289	195	4	199	4%
North America	5,933	-116	5,817	50	7	57	1%
Latin America & Caribbean	1,691	1,365	3,056	297	74	371	12%
World	31,332	2,415	33,747	2,084	378	2,462	7%

Emissions from cooking = 1.8 billion tCO₂

- 1.5 billion tCO₂ from direct use
- 0.3 billion tCO₂ from associated charcoal manufacturing

The basic economics

Modelling framework

- Monte Carlo simulation, using ranges of cost, consumption and emission estimates
- 500 x 3 types of user (charcoal, urban FW, rural FW) x 73 countries
- 109,500 paired estimates of emission reductions and cost
- Scale-up to total user population, rank by emission cost and aggregate by emissions

- A switch to an improved cookstove (ICS) would use the same type of fuel
- Charcoal and urban fuelwood users purchase fuel
- Rural fuelwood users collect or purchase, depending on the opportunity cost of time
- Additional distribution and extension cost for rural users

Cost data (ranges)

- Fuelwood and charcoal price from FAOSTAT
- Collection time from literature review
- Cost of time from WB poverty statistics and per capita value-added in agriculture
- Stove cost, durability, adoption and fuel reductions from literature review
- Distribution and extension costs based on fuels and labour costs in countries.
- Emissions from IPCC conversion factors

Mitigation cost: Angola

Reduction in emissions from use of improved cookstoves (in thousand tonnes CO₂)

Results (gross)

Benefit-cost ratio

Annual costs and benefits for 285 million stoves to reduce emissions by 166 MtCO₂ (optimal at USD 20/tCO₂)

Region	Stove Cost	Producer Su	Benefit/cost		
	(million USD)	Private	CO2	Total	ratio
Africa	655	1,157	1,290	2,447	4.7
Asia and Oceania	1,072	714	1,228	1,943	2.8
Latin America and Caribbean	162	107	319	426	3.6
World	1,889	1,978	2,838	4,816	3.5

No regrets option (zero carbon value – 155 million stoves)

Region	Stove Cost	Producer Surplus (million USD)			Benefit/cost
	(million USD)	Private	CO2	Total	ratio
Africa	290	1,157	0	1,157	5.3
Asia and Oceania	607	714	0	714	2.2
Latin America and Caribbean	83	107	0	107	2.3
World	980	1,978	0	1,978	3.0

B/C ratio by country

Benefit-cost ratio at a carbon value of USD 20/tCO₂

Conclusions

- Mitigation potential: 95 165 MtCO₂
- Equal to 0.3 0.5% of global emissions
- In Africa: 1.5 3.0% of emissions
- High benefit-cost ratio
- Additional benefits (health, deforestation)
- Leakage/additionality?